If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-56x-10780=0
a = 3; b = -56; c = -10780;
Δ = b2-4ac
Δ = -562-4·3·(-10780)
Δ = 132496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{132496}=364$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-364}{2*3}=\frac{-308}{6} =-51+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+364}{2*3}=\frac{420}{6} =70 $
| 3x^2-6x-10780=0 | | 3/2x^2+1/2x-15050=0 | | 6x-12+3x=4+9x-15 | | 3+1x=2x-1 | | 3w+6/6w+2=3/4 | | 6x-10=2x=4+8x-13 | | 3x^2+x-30110=0 | | x2-3x=524 | | 2x-44=6-6x | | X2+12x+13=0 | | (√7+x)=x-5 | | √7+x=x-5 | | 6x^2+3x-15050=0 | | 2x^2-282x+280=0 | | 6x^2+3x-10050=0 | | -12(n+7)=2n+8(1+4n) | | 3x^2+x-7525=0 | | 24x^2+72x+48=0 | | 24^2+72x+48=0 | | 6x^2+3x-1050=0 | | 2(m-3)=3m+3 | | 32=x+0.29x | | -16=-6x+4(x-7) | | 13-14y+y^2=0 | | (x-12)/6+14=9+6 | | 64w+56=56w | | 8x-0.5=6 | | 6x+8x+1/4=383/4 | | 5(-3x-2)-(x-3)=-4(4x+5)+13=666 | | 16-(-4y)=-28 | | 6x-5.45=-1.31 | | 8x-5.66=-3.18 |